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Abstract

Readily available high resolution data on population distribution is an important resource for monitoring human-
environment interactions and for supporting planning and management decisions. Using a grid that approximates
population density over the entire country seems like the most practical approach to exploring and distributing detailed
population data but instead data based on census aggregation units is still the most widely used method. In this paper
we describe the construction of 30 m resolution grid representing the distribution of population in 2010 over the
entire conterminous United States. The grid is computed using 2010 U.S. Census block level population counts
disaggregated by a dasymetric model that uses land cover (2011 NLCD) and land use (2010 NLUD) as ancillary
data. Detailed descriptions of the ancillary data and dasymetric model are given. Methods of computing the grid are
presented followed by an extensive assessment of model accuracy. Overall the expected value for relative error of
the model is 44% which is at the lower limit of errors reported for other continental-sized, high resolution population
grids. We also offer a more specific error estimate for areas with specified value of population density. Using two
example areas, one highly urbanized and another rural, we demonstrate the advantages of using the gridded population
data over the census block-based data. Our 30 m population grid is available for online exploration and for download
from the custom-made GeoWeb application SocScape at http://sil.uc.edu.
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1. Introduction1

Accurate information about the human population2

distribution is essential for formulating informed re-3

sponses to population-related social, economic, and4

environmental problems. Governments need precise5

population data to support planning for infrastructure6

projects (Benn, 1995; Murray et al., 1998; Pattnaik7

et al., 1998), locating public facilities (Deng et al.,8

2010), allocating and managing of resources (Gleick,9

1996; Smith et al., 2002), and for preparing responses10

to natural disasters (Dobson et al., 2000; Balcik and11

Beamon, 2008; Maantay and Maroko, 2009; Tenerelli12

et al., 2015). Similarly, the private sector needs pop-13

ulation data for planning the locations of their facilities14

(Martin and Williams, 1992), for optimization of service15

delivery systems, and for risk assessments (Chen et al.,16

2004; Thieken et al., 2006). Reliable information about17
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the population distribution is also essential to assess hu-18

man pressure on the environment (Weber and Christo-19

phersen, 2002), for quantifying environmental impact20

on population (Vinkx and Visee, 2008), and for public21

health applications (Hay et al., 2005).22

An authoritative source of population data is the gov-23

ernment instigated national census; in the U.S. popula-24

tion data is collected every 10 years by the U.S. Census25

Bureau (hereafter referred to as the census). The most26

recent census was performed in 2010. The census col-27

lects population data with the ultimate resolution of an28

individual household but it releases this data aggregated29

to fixed areal units due to privacy concerns. The small-30

est aggregated areal unit released by the census is the31

census block. Census blocks in urban areas may be as32

small as a city block, but they are much larger in subur-33

ban and rural areas. There are several reasons why pop-34

ulation data aggregated to fixed administrative units is35

not an ideal form of information about population den-36

sity.37
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First, it suffers from the modifiable areal unit problem38

(Lloyd, 2014). Second, the spatial detail of aggregated39

data is variable and low, except in the most densely pop-40

ulated urban areas. Third, there is a spatial mismatch41

(Voss et al., 1999) between census areal units (blocks,42

tracts etc.) and user-desired units (for example, neigh-43

borhoods, tax zones, postal delivery zones, vegetation44

zones, watersheds, etc.). Finally, the boundaries of cen-45

sus aggregation units (particularly blocks) may change46

from one census to another, making the analysis of pop-47

ulation change at high spatial resolution difficult (Holt48

et al., 2004; Schroeder, 2007; Ruther et al., 2015).49

Overall, the properties of aggregation unit-based data50

make it ill-suited for the spatial analysis of population-51

related socio-economic and environmental problems.52

Instead, the population grid has emerged as an alter-53

native format to deliver population data. A population54

grid is a geographically referenced lattice of square cells55

with each cell carrying a population count or the value56

of population density at its location. Population grids57

are constructed from census unit-based data using ei-58

ther areal weighting interpolation (Goodchild and Lam,59

1980; Flowerdew and Green, 1992; Goodchild et al.,60

1993) or dasymetric modeling (Wright, 1936; Langford61

and Unwin, 1994; Eicher and Brewer, 2001). Popula-62

tion grids have the following advantages: all cells have63

the same size, the cells are stable in time, there is no64

spatial mismatch problem as any partition of the study65

area can be rasterized to be co-registered with a popu-66

lation grid. In addition, if dasymetric modeling is used67

(see below), a population grid offers a spatial resolution68

superior to that of the unit-based data.69

With respect to the construction of a population grid,70

dasymetric modeling can be described as a technique of71

disaggregating aggregation unit-based population data72

into grid cells of a higher spatial resolution using an-73

cillary data that correlates with population density but74

which has a higher resolution. Sharpening population75

data using dasymetric modeling has been extensively76

studied (Petrov, 2012) with a focus on the utilization77

of different types of ancillary data in order to increase78

the accuracy of a model. The original, and still the79

most widely used, ancillary data are land cover/land80

use data (Wright, 1936; Mennis, 2003, 2009; Linard81

et al., 2011). High-resolution satellite images have re-82

cently been utilized as ancillary data to identify individ-83

ual buildings (Ural et al., 2011; Lu et al., 2010; Lung84

et al., 2013). A regression analysis is able to link the85

area or volume of each building to the number of peo-86

ple in it. If available, the Light Detection and Rang-87

ing (LiDAR) data is used (Lu et al., 2010), to help es-88

tablish the volume of a building. Another approach to89

dasymetric modeling is to use local infrastructure in-90

formation, such as street density (Reibel and Bufalino,91

2005; Su et al., 2010) or the density of points of interest92

(Bakillah2014) as ancillary data. Tax parcel data have93

also been used (Maantay et al., 2007; Kar and Hodg-94

son, 2012; Mitsova et al., 2012; Jia et al., 2014; Jia and95

Gaughan, 2016) to disaggregate census population data.96

Other proposed sources of ancillary data include light97

emission data (Briggs et al., 2007; Sridharan and Qiu,98

2013) and address datasets (Zandbergen, 2011).99

Despite rapid progress in developing various tech-100

niques for dasymetric modeling, the practical adoption101

of population grids is low. This is because the majority102

of potential users are only able to utilize the ready-to-103

use product (a population grid) rather then actually cre-104

ate their own. In order to increase the adoption of demo-105

graphic data for spatial analysis, high resolution grids106

over broad geographical areas need to be available in107

the public domain. Such grids have been developed and108

made available for all countries in the European Union109

(Gallego, 2010; Gallego et al., 2011) and, through the110

WorldPop project (http://www.worldpop.org.uk), for111

countries in South and Central America, Asia and112

Africa (Gaughan et al., 2013; Linard et al., 2012;113

Sorichetta et al., 2015). For the United States, the114

Socioeconomic Data and Application Center (SEDAC)115

(http://sedac.ciesin.columbia.edu/) provides 1 km reso-116

lution (250 m for selected metropolitan areas) demo-117

graphic grids. However, in addition to having a rather118

coarse resolution, these grids are only available for the119

years 1990 and 2000. A higher resolution (90 m) US–120

wide demographic grid, presumably based on most re-121

cent census data, is under development by the Oak122

Ridge National Laboratory (Bhaduri et al., 2007). This123

project, called LandScan–USA, aims at providing both124

nighttime (residential) as well as daytime population125

densities, but it is not currently available, nor is it ex-126

pected to be in the public domain once it becomes avail-127

able.128

Since 2014 we have been developing high resolu-129

tion demographic grids for the entire conterminous US.130

Our goal is to develop grids that offer a significant im-131

provement over SEDAC grids and make them avail-132

able for exploration and download through our inter-133

active web-based application SocScape (Social Land-134

scape) at http://sil.uc.edu. The first generation of our135

grids (referred to as SocScape–90) were the results of136

sharpening SEDAC grids to 90 m resolution using dasy-137

metric modeling with the National Land Cover Dataset138

(NLCD) as ancillary data (Dmowska and Stepinski,139

2014). Using this approach we have developed and140

made available through SocScape the population grids141
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for 1990 and 2000. However, our original approach142

had several shortcomings and limitations. First, it did143

not use original census data, instead it relied on the144

SEDAC grid, which, in addition to containing a number145

of errors and inconsistencies (Dmowska and Stepinski,146

2014), was also spatially coarser than census blocks in147

densely populated urban areas. Second, it was limited to148

years 1990 and 2000 – the only years for which SEDAC149

published its grids.150

In this paper we report on our second generation of151

U.S.-wide grids (referred to as SocScape–30). Our new152

approach differs from the previous approach in the fol-153

lowing ways: (1) It uses dasymetric modeling to disag-154

gregate census blocks directly, rather then disaggregat-155

ing SEDAC cells. (2) It uses two ancillary datasets, the156

NLCD 2011 and the newly available National Land Use157

Dataset (NLUD2010) (Theobald, 2014). (3) The new158

grid has a nominal resolution of 30 m, equal to the reso-159

lution of both ancillary datasets. (4) We offer an assess-160

ment of uncertainty of the model in the form which is161

directly relevant to a user. SocScape–30 is calculated on162

the basis of 2010 Census block-level data and is avail-163

able online through our GeoWeb application. Section164

2 describe the datasets used for the construction of the165

2010 grid and section 3 describes our methodology for166

obtaining the population grid. Section 4 gives the de-167

tails of our calculations, presents a quality assessment,168

and describes how to access the data. Section 5 uses two169

examples, one urban and one rural, to demonstrate the170

advantages of using griided data over the census block-171

based data. Discussion and conclusions are given in sec-172

tion 6.173

2. Input data174

The SocScape–30 population grid is constructed us-175

ing dasymetric modeling. In the context of this paper176

the dasymetric modeling technique requires two types177

of data - areal unit-based population data, to be disag-178

gregated to a high resolution grid, and ancillary data at179

the resolution of this grid.180

2.1. Census data181

The primary source of spatio-demographic infor-182

mation in the United States are decennial censuses183

(http://www.census.gov). The U.S. Census Bureau pro-184

vides data as a series of summary text files labeled185

from 1 to 4 which provide information at different lev-186

els of spatial aggregation (from as small as a census187

block to as large as the entire U.S.). To construct188

SocScape–30 we used the population count for each189

block based on variable P1 (total population) from Sum-190

mary File 1 (SF1). We used the census data distribution191

provided by the National Historical Geographic Infor-192

mation System (NHGIS) at https://www.nhgis.org/ as193

we deemed NHGIS distribution easier to use than the194

Census Bureau distribution. This is because NHGIS-195

distributed demographic tables and shapefiles depicting196

block boundaries contain identifiers expediting the task197

of joining population counts to shapefiles.198

Sizes of shapefiles containing block boundaries and199

their population counts vary from 34 MB for the Dis-200

trict of Columbia to 4037 MB for the state of California.201

The overall size of the block-level shapefile/population202

count data for the entire conterminous U.S. (11007989203

blocks) was 39 GB. We converted the block shapefile204

into a 30 m resolution raster grid co-registered with the205

ancillary grid (see the next subsection). Grid cells con-206

stituting a given block store numerical identifier of this207

block. There are 8,651,157,015 cells in the grid. Block208

rasterization is performed in order to expedite the com-209

putation of the dasymetric model. An unintended con-210

sequence of rasterization is the “loss” of 264565 blocks211

having a size about equal or smaller than a grid cell.212

This constitutes about 2% of all the blocks, however, it213

constitutes a “loss” of only 0.035% of the population214

because many of these blocks are uninhabited.215

2.2. Ancillary data216

The role of ancillary data is twofold, first to distin-217

guish between inhabited and uninhabited sections of218

each block, and second, to provide information about219

variations in population density within inhabited sec-220

tions of each block. We use two different ancillary221

datasets: the National Land Cover Dataset 2011 (NLCD222

2011) (Homer et al., 2015) and the National Land Use223

Dataset 2010 (NLUD 2010) (Theobald, 2014). Both224

NLCD 2011 and NLUD 2010 grids have a resolution225

of 30 m and are co-registered with the grid of rasterized226

blocks. All three grids are in the Albers Conical Equal227

Area (EPSG 5070) projection so each grid cell has ap-228

proximately the same area.229

Within the conterminous U.S. each 30 m cell in230

NLCD 2011 is assigned one of possible 16 land cover231

classes: open water (11), perennial ice/snow (12), de-232

veloped, open space (21), developed, low intensity (22),233

developed, medium intensity (23), developed high in-234

tensity (24), barren land (31), deciduous forest (41), ev-235

ergreen forest (42), mixed forest (43), shrub (52), grass-236

land (71), pasture (81), crops (82), woody wetlands237

(90), herbaceous wetlands (92). The numbers in brack-238

ets are the numerical labels of land cover classes. The239

problem with using the NLCD as an ancillary variable240
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Figure 1: Decision tree showing the process of assigning a cell’s an-
cillary class on the basis of its NLCD and NLUD classes and the pop-
ulation count in the block to which it belongs.

for dasymetric modeling is that its classes are based on241

surface spectral properties and thus cannot distinguish242

between populated buildings and unpopulated buildings243

as well as other impervious surfaces.244

To have better information about populated vs. un-245

populated areas we also utilize the NLUD 2010. Each246

cell in NLUD 2010 is assigned one of 79 land use247

classes (see Table 1 in Theobald (2014)). These classes248

are divided into five broad categories: water, built-up,249

production, recreation, and conservation. A built-up250

category is further subdivided into residential and non-251

residential (commercial, industrial, institutional, trans-252

portation) subcategories. In principle, NLUD is supe-253

rior to NLCD as an ancillary variable for dasymetric254

modeling because it relates more directly to population255

density. Therefore, it could be argued that the dasymet-256

ric model should be constructed exclusively on the ba-257

sis of NLUD. However, NLUD contains artifacts due to258

fact that it is a compilation of many different datasets of259

varying quality and form. Thus, for the purpose of our260

dasymetric model we utilize NLUD 2010 only to distin-261

guish between inhabited and uninhabited areas - a dis-262

tinction that is the most problematic while using NLCD.263

Thus, we reclassify NLUD into two categories: unin-264

habited (water, built-up commercial, built-up industrial,265

built-up institutional (except nursing homes), built-up266

transportation, mining area, and general and developed267

parks) and inhabited (all other classes).268

Information from the census blocks, NLCD 2010 and269

the reclassified NLUD 2010 is combined to assign to270

each grid cell one of 6 possible ancillary classes: un-271

inhabited (6), inhabited, vegetation (5), inhabited, high272

intensity (4), inhabited, medium intensity (3), inhabited273

low intensity (2), and inhabited, open space (1). The274

number in brackets are our numerical labels for these275

classes.276

The process of assigning these classes is illustrated277

by the decision tree shown in Fig. 1. Each cell is sub-278

jected to a hierarchy of predicate statements to decide279

its ancillary class. At the first node the cell is assigned280

to class 6 (uninhabited) if the block to which it belongs281

has population count of zero. At the second node the282

cell is assigned to class 6 if the cell has NLCD label283

11 (open water), 12 (perennial ice/snow), or 31 (barren284

land). The third node tests whether the cell is assigned285

to inhabited or uninhabited categories according to our286

reclassification of NLUD. If the cell has an “inhabited”287

category, the fifth node assigns it to one of 5 inhabited288

classes (1 - open space, 2 - low intensity, 3 - medium289

intensity, 4 - high intensity, 5 - vegetation) based on its290

NLCD labels as shown in Fig. 1. If the cell has an “un-291

inhabited” category then the fourth node assigns it to292

class 6 unless all cells in a given block are assigned to293

the “uninhabited” category which is in the conflict with294

the fact that the block has a nonzero population count295

(follow the tree back to the first node). As the census296

information is considered more reliable, the cell is as-297

signed its ancillary class based on its NLCD labels as298

shown in Fig. 1.299

Fig. 2 illustrates the construction of the ancillary data300

layer using six adjacent blocks in Cincinnati, OH as an301

example. A satellite image of the blocks is given for ref-302

erence (panel A). Panel B shows the NLCD map; it can303

be checked alongside the image for accuracy. Panel C304

shows the division of the area into inhabited and unin-305

habited sections according to the NLUD. Finally, panel306

D shows the map of ancillary classes we derived from307

the NLCD and NLUD using the decision tree in Fig. 1.308

3. Dasymetric model309

The key step when constructing a dasymetric model310

is the establishment of the relationship between ancil-311

lary variables and population density. A significant312

body of literature exists on the different methods used313

to establish such a relationship. Their review is beyond314

the scope of this paper. However, for the most relevant315

background we refer the reader to the descriptions of316

models used in other projects whose aim was to con-317

struct large scale population grids: Gallego et al. (2011)318

discussed various models tested while computing the319

100 m grid for countries in the European Union, and320

Stevens et al. (2015) discussed a model used to compute321

the 100 m grids for the WorldPop project.322
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inhabited

uninhabited
uninhabited (6)

inhab. open space (1)

inhab. low intensity (2)

inhab. med. intensity (3)

inhab. high intensity (4)

inhab. vegetation (5)

dev. high intensity (24) dev. med. intensity (23)

dev. low intensity (22) dev. open space (21)

evergreen forest (42) deciduous forest (41)

mixed forest (43)

NLCD classes ancillary classes

A

B C D

Figure 2: Construction of the ancillary layer using area consisting of six adjacent blocks in Cincinnati, OH as an example. (A) A satellite image
showing the surface masked to the spatial extent of the area; six constituent blocks are indicated by orange lines. (B) Spatial distribution of NLCD
classes over the area. (C) Spatial distribution of reclassified NLUD classes over the area. (D) Spatial distribution of final ancillary classes over the
area.

In our model the relationship between the ancillary323

variable (6 classes resulting from combining NLCD324

and NLUD information) and population density is in325

the form of characteristic values of population density326

for each ancillary class (Mennis and Hultgren, 2006).327

These values are established by sampling the population328

density in blocks selected from the entire U.S. which329

are (almost) homogeneous with respect to their ancil-330

lary classes. For ancillary classes 1 to 4 we set the block331

homogeneity threshold to 90% and for ancillary class 5332

we set the block homogeneity threshold to 95%.333

Table 1 summarizes the block samples. The sec-334

ond column gives the count of homogeneous blocks335

with respect to each ancillary class, the third column336

gives the population count in homogeneous blocks, and337

the fourth column gives the total area of homogeneous338

blocks. The next three columns (fifth to seventh) give339

different estimates of characteristic population density340

(in people/km2) for each ancillary class. Values in the341

fifth column are calculated by dividing the entire popu-342

lation in a given sample by the total area of all blocks343

in this sample. Values in the sixth column are the me-344

dians of population densities of individual blocks in a345

given sample. Values in the seventh column correspond346

to the maximum probability of a given sample proba-347

bility distribution function. Only for class 4 (inhabited,348

high intensity) do the three estimates of population den-349

sity vary considerably.350

Fig. 3 shows the probability distribution functions for351

values of population density in each sample of homo-352

geneous blocks. From these distributions it is clear that353

the density values are broadly distributed. Despite this354

broadness, the shapes of density distribution functions355

for ancillary classes 1,2,3, and 5 indicate the existence356

of characteristic values – values of maximum probabil-357

ity which correspond to the values of a sample’s mean as358

well as its median. However, this is not the case for an-359

cillary class 4 (inhabited, high intensity) for which the360
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Table 1: Characteristic population densities for six ancillary classes

Ancillary class Blocks count Population Area [km2] Mean density Median density Max. prob d [%]
uninhabited (6) 4576562 0 3001721 0 0 0 0
inhabited, open space (1) 47198 701428 902 778 850 801 4.21
inhabited, low intensity (2) 208171 5571086 2511 2219 2051 1874 11.98
inhabited, medium intensity (3) 143543 7847399 1648 4761 4060 3346 25.73
inhabited, high intensity (4) 30887 2966009 276 10743 6389 1076 58.05
inhabited vegetation (5) 753140 11795302 2153420 5 6 6 0.03
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Figure 3: Probability distribution functions of population density val-
ues in samples of blocks which are homogeneous with respect to an-
cillary class. The distribution for ancillary class 5 is shown as an inset
because of its vastly different scale of density values. The colors of
distribution curves and the numerical labels of the curves correspond
to ancillary class labels (see legend of Fig. 2).

probability peak (albeit a small one) occurs at a much361

smaller density value than the sample average – there is362

simply no good characteristic value of population den-363

sity associated with this ancillary class.364

We have chosen to use the values in the fifth column365

(average method) of Table 1 as sampled characteristic366

population densities and denoted them by the symbols367

pi, where i = 1 . . . 6 are numerical labels of ancillary368

classes. The last column in Table 1 gives the values of369

relative population density coefficients di370

di =
pi

p1 + ... + p6
× 100, i = 1, . . . 6 (1)

The relative population density coefficients could be371

interpreted as percentages of a given block population372

assigned to portions of the block covered by corre-373

sponding ancillary classes in a hypothetical case when374

the block area is divided equally between all ancillary375

classes.376

According to this model the relative population den-377

sity in areas belonging to the high intensity class is378

about twice the relative density of areas belonging to379

the medium intensity class, which, in turn is about twice380

the relative density of the low intensity class. The rela-381

tive density of the open space class is about three times382

lower than that of the low intensity class. Finally, the383

relative density of the vegetation class is about two or-384

ders of magnitude lower than that of the open space385

class.386

A dasymetric model disaggregates population within387

a block to its constituent cells in proportion to a rela-388

tive population density coefficient corresponding to the389

ancillary class associated with a cell. Denoting a given390

block by label x, where x = 1, . . . , 11007989, and de-391

noting a given cell in this block by label j, we calculate392

the weight Wx, j associated with this cell as:393

Wx, j =
dx, j

6∑
k=1

Ax,kdk

(2)

where dx, j is the value of the relative population density394

coefficient in cell j of block x determined by the label395

of the cell’s ancillary class and Ax,k is an area (in units396

of cells) within cell x associated with ancillary class k.397

The denominator in eq. 2 is to ensure that weights over398

all cells in the block add to 1. The population count in399

cell j of block x is given as:400

popx, j = Wx, j × popx (3)

where popx is the population in block x and popx, j is401

the population in cell j of block x. From the proper-402

ties of the weights it is clear that the sum of populations403

of all constituting cells is equal to the population of the404

block. Thus, our dasymetric model has a pycnophylac-405

tic (mass-preserving) property. Note that popx, j is not406

an integer number and, in many areas, it is smaller than407

1. Thus, referring to popx, j as a population count is408

inappropriate. Instead, popx, j should be referred to as409

a population density with units of people/area. Calcu-410

lated values of popx, j are given in units of people/900m2
411

and our downloadable data (see section 4.3) are given412

in these units. For the purpose of illustration in this413
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paper, and for the online population density map, we414

recalculated the values to the more customary units of415

people/km2 by multiplying each cell value by 9 × 10−4
416

which is the area of a cell in km2.417

Fig. 4 demonstrates the use of the dasymetric model418

using the 6 blocks introduced in section 2.2 as an ex-419

ample. Panel A shows spatial distribution of population420

density inferred from block data alone; in the absence421

of any additional information population density over422

each block is assumed constant and equal to the number423

of people in the block divided by the area of the block.424

Panel B shows the spatial distribution of weight values425

calculated on the basis of ancillary data (eq. 2) and panel426

C shows the spatial distribution of population density427

after disaggregation by the dasymetric model (eq. 3).428

According to the model, five out of six blocks in this429

example are characterized by a heterogeneous distribu-430

tion of population. The grid-based map (panel C) of-431

fers more specific information about where inhabitants432

of these blocks live. The spatial precision of the grid-433

based map can be visually checked using a high resolu-434

tion image (Fig. 2A).435

4. U.S.–wide population grid436

Although dasymetric modeling is a well established437

method and is relatively straightforward to apply, its438

application to the high resolution disaggregation of439

continental-scale areas requires an efficient computa-440

tional algorithm and the ability to handle big datasets.441

The major challenge for the calculation of a 30 m dasy-442

metric model of population density for the entire con-443

terminous United States is the size of input and output444

data. Another challenge is to provide an intuitive and445

convenient means of reviewing and accessing the grid446

data.447

4.1. Computation of population grid448

Our computational task was to disaggregate over 11449

millions census blocks into over 8 billion 30 m grid450

cells, and to do this in a reasonable time on a relatively451

modest computer with Intel 3.4GHz, 4-core processor452

and 16 GB of memory running the Linux operating sys-453

tem. We use a combination of two open source software454

packages: GRASS 7.0 (Neteler and Mitasova, 2007)455

which is a geographical information system platform,456

and R (R Development Core Team, 2008) which is a457

programming language and software environment. In458

addition, we also use the spgrass6 (Bivand, 2007) pack-459

age that allows for the efficient transport of data between460

GRASS and R.461

Computation consists of several steps that follow the462

methodology described in sections 2 and 3: data pre-463

processing (in GRASS), calculation of the population464

grid (in R), and post-processing (in GRASS). The in-465

put for the pre-processing step are vector data contain-466

ing the boundaries of census blocks together with an at-467

tribute table as well as ancillary datasets (NLCD and468

NLUD) for each county separately. Pre-processing per-469

forms block rasterization and computes a single ancil-470

lary dataset from NLCD+NLUD datasets (see Fig. 1).471

At the end it imports the data (organized by county) to472

R. The pre-processing step takes 37 h. Actual calcula-473

tion of the grid using the dasymetric model (see section474

3) is performed in R and consists of establishing weights475

and disaggregating the block population according to476

these weights. This step takes 6 h. The post-processing477

step consists of exporting the grid (organized by county)478

to GRASS and joining grids for separate counties into479

one grid for the entire conterminous U.S. This step takes480

18 h. Altogether, the entire computation takes 61 hours.481

However, the grid of weights is stored and can be reused482

for disaggregation of other block-level variables which483

are related to population, such as sex, age, and race.484

Thus, for example, to obtain a U.S.–wide grid of the485

population of African-Americans we would start from486

weight we have already calculated and perform only487

disaggregation and post-processing.488

4.2. Assessment of accuracy489

The accuracy of the grid can be assessed directly only490

if ground truth data is available. In this context the491

ground truth data would consist of certifiable popula-492

tion counts within aggregation units smaller than those493

used in the dasymetric model. For example, the EU pop-494

ulation grid (Gallego, 2010; Gallego et al., 2011) was495

obtained by disaggregating population in communes –496

relatively large areal aggregation units with areas much497

larger than 1 km2. In this case, ground truth data in498

the form of 1 km2 population grids was available for499

several countries in the EU. On the other hand, census500

blocks – the areal aggregation units we chose to disag-501

gregate – are the smallest aggregation units available for502

the U.S., thus, we lack any sub-block population ground503

truth data to assess the accuracy of our grid directly.504

Instead, we assess the accuracy of our method by cal-505

culating an additional grid based on the disaggregation506

of larger units – census block groups – and comparing507

the population of the resultant grid aggregated to blocks508

with the population of the blocks as given by the cen-509

sus. This method was used previously, including most510

recently by Jia et al. (2014) and Stevens et al. (2015).511
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Figure 4: Demonstration of dasymetric modeling using an area consisting of six adjacent blocks in Cincinnati, OH as an example. (A) Map of
population density using only block-level data. Numbers indicate population counts for each block. (B) Spatial distribution of weight values. (C)
Map of population density using grid data calculated using a dasymetric model.

Let’s consider a given block group consisting of M512

blocks. We denote the population of m-th block, as513

given by block level data, by popGT
m , where the super-514

script GT indicates ground truth. We denote the popula-515

tion of m-th block as obtained from group-based dasy-516

metric model by popDM
m , where the superscript DM in-517

dicates dasymetric model. Jia et al. (2014) following518

Eicher and Brewer (2001) used two quantities to assess519

the accuracy of their methods:520

RMSE =

√√√
1
M

M∑
m=1

(popGT
m − popDM

m )2 (4)

and521

CV =
RMSE

1
M

M∑
m=1

popGT
m

(5)

where RMSE is the root square mean error and CV is522

the coefficient of variance. RMSE expresses the devi-523

ation (in the number of people) of the model from the524

ground truth in absolute terms, whereas CV expresses525

this deviation relative to the population. Both quantities526

pertain to a single block group. Calculating the mean (or527

median) of these quantities over all block groups in the528

region covered by the grid assesses the overall accuracy529

of the grid.530

We first calculate the statistics of RSME and CV for531

our grid in order to compare them to the analogous532

statistics calculated by Jia et al. (2014) for their 30 m533

resolution population grids covering Alachua county in534

Table 2: Accuracy assessment using RMSE and CV
Grid Mean RMSE Mean CV Median CV
Conterminous U.S. 43.17 0.97 0.78

Alachua 63.12 1.29 1.21
Alachua NLCD 73.26 1.36 1.30
Alachua parcels 63.96 1.20 0.88

the state of Florida. They calculated two grids (disag-535

gregated from 2010 census blocks) using two different536

ancillary datasets: NLCD, and 2010 tax parcel data.537

Parcel data is considered better ancillary data for dasy-538

metric modeling than land cover because it relates more539

directly to population count (Jia et al., 2014). However,540

it is only available (in various degrees of completeness)541

for nineteen states in the U.S. (Stage and VonMeyer,542

2006) and thus cannot constitute a base for a U.S.–wide543

population grid.544

The first row in Table 2 shows the mean value of545

RMSE, the mean value of CV, and the median of CV,546

respectively. These statistics were calculated over all547

block groups in the conterminous U.S. using our dasy-548

metric model. For the remaining three rows in Table549

2 statistics were calculated only over block groups in550

Alachua county. The second row shows values calcu-551

lated using our model, the third row shows values cal-552

culated using Jia et al. (2014) model utilizing NLCD553

as an ancillary variable, and the fourth row shows val-554

ues calculated using the Jia et al. (2014) model utiliz-555

ing tax parcel data as an ancillary variable. Statistics556

for Alachua county indicate that our grid (restricted to557

8



Alachua county) has higher accuracy than the Jia et al.558

(2014) model based on NLCD despite using values of559

characteristic population densities derived from nation-560

wide block samples. This can be attributed to our more561

advanced dasymetric model which utilizes NLCD as562

well as NLUD, and to having six ancillary classes in-563

stead of three. In comparison to our model the Jia et al.564

(2014) model based on parcel data has a slightly higher565

value of 〈RMSE〉, a slightly lower value of 〈CV〉, and a566

lower value of median CV value. Thus, the population567

grid (within the Alachua county) constructed using tax568

parcels as ancillary data has somewhat higher accuracy569

than our grid constructed using a combination of NLCD570

and NLUD but this difference is small. Assessment of571

our grid over the entire conterminous U.S. yields supe-572

rior accuracy in comparison with the part restricted to573

Alachua county and in comparison with both grids con-574

structed by Jia et al. (2014).575

Although the accuracy measures discussed above are576

useful for the comparison of different dasymetric mod-577

els, they do not indicate to a user the degree of accu-578

racy that can be expected from a grid. If a user uti-579

lizes the grid to estimate the population count of a sub-580

block areal unit, what is an uncertainty of this esti-581

mation? To provide this information we assume that582

uncertainty indicators calculated for blocks using the583

dasymetric model obtained by disaggregation of block584

groups are valid for sub-block units when using a dasy-585

metric model which disaggregate blocks.586

We calculate the statistics of relative errors over all587

inhabited blocks in the conterminous U.S. Note that due588

to the way we construct our ancillary classes (see Fig. 1)589

uninhabited blocks have zero population error in our590

model and could be excluded from statistics. The rel-591

ative error δm of the population count for block m is the592

absolute error divided by the magnitude of the ground593

truth value.594

δm =
|popGT

m − popDM
m |

popGT
m

(6)

The value of δm has a simple interpretation – if multi-595

plied by 100 it expresses the overestimation or underes-596

timation of the number of people as a percentage of the597

actual population of the block. As the distribution of598

the values of δm over all inhabited blocks is skewed, the599

usual statistical indicators (mean and standard variation)600

are not providing useful information, instead a median601

(equal to 0.44) provides a robust estimation of the “ex-602

pected” value of δM and the median absolute deviation603

(equal to 0.4) provides a robust estimation of spread in604

the values of δm around the expected value. Thus, when605
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Figure 5: Two-dimensional histogram of all inhabited blocks with re-
spect to their population density and the value of relative error be-
tween its modeled and actual populations. Number of blocks in each
bin of the histogram is color-coded according to the legend. Note
logarithmic scales for all variables.

using our grid to estimate a population in a sub-block606

area, a user can expect, on average, 44% uncertainty in607

the population count.608

We can provide further information on the uncer-609

tainty of grid-based population estimations by calculat-610

ing a two-dimensional histogram (shown in Fig. 5) of611

blocks with respect to their population density and rel-612

ative error. Note that both population density (horizon-613

tal axis) and relative error (vertical axis) are shown in614

logarithmic scale due to the orders of magnitude vari-615

ations in their values. The histogram has a final num-616

ber of bins with each bin represented by a small square617

in Fig.5. The color of a bin carries information on the618

number of blocks having the population density and rel-619

ative error as indicated by the bin’s coordinates. Note620

that the block count legend is also logarithmic, 83% of621

all blocks are in the three top block counts categories622

indicated by pink, darker red, and lighter red colors.623

One way to use Fig. 5 to obtain information about624

population count uncertainty is to first select a value625

of population density for an area of interest. Values of626

block counts along the vertical line corresponding to the627

selected value of density combine into distribution of er-628

ror values for these blocks. The peak of this distribution629

is located at the expected value of an error for blocks in630

this population density range and a deduced shape of the631

distribution informs about spread of error values around632

the expected value. Thus, assuming that histogram ob-633
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Figure 6: Screenshot of SocScape after population density data layer
has been selected, the map zoomed to show the area around Chicago,
IL. The download tool is selected from the navigation panel, and
download region is indicated by a user.

tained for blocks is also valid for sub-block areas a user634

interested in an area having population density of about635

3000 people/km2 finds that the error is between 0.23 and636

0.45. On the other hand, a user interested in areas hav-637

ing population density of about 100 people/km2 finds638

that the error is most likely to be about 0.67.639

4.3. Data access640

We provide convenient access to the 2010 population641

grid via SocScape (Social Landscape) – a GeoWeb ap-642

plication designed for exploration and data distribution643

of population density and racial diversity grids. Soc-644

Scape is available at http://sil.uc.edu. Upon launching645

SocScape shows a background map of the United States646

and a menu to select data. When “Population density647

2010” is selected from the menu a map of population648

density appears categorized to eleven bins represented649

by different colors (the map legend is accessible from650

the navigation panel). It is important to differentiate be-651

tween the map of population density, which is intended652

only for online exploration, and actual (not categorized)653

data that can be downloaded once a user decides on an654

area of interest.655

Data in the population grid corresponds to population656

density and has units of people per cell. It can be down-657

loaded by an area of interest. To download the data a658

user has to zoom into a general area of interest and select659

the download tool from the navigation panel. When the660

download tool appears the ”Population density 2010”661

data layer needs to be selected. Next, the user indicates662

a specific region of interest by dragging the mouse to663

draw a rectangle. Pressing on the GeoTIFF button in664

the download tool will start the download. The data is665

provided in geotiff format.666

5. Grid-based versus blocks-based population maps667

What differences can one expected when mapping668

population using population density (an intensive vari-669

able defined on a regular grid) versus a population ag-670

gregated to units (an extensive variable defined on cen-671

sus blocks). To point out differences between the two672

approaches we selected two locations as examples, first673

– a highly urbanized area of San Francisco CA, and sec-674

ond – a rural area centered on the Lake Loramie State675

Park, OH.676

Fig. 7A shows a map of population density in San677

Francisco calculated from census blocks; density is uni-678

form over each block as it was calculated by dividing679

the population in a block by its area. Block boundaries680

are not shown because the size of the blocks in this area681

are very small and the lines representing their bound-682

aries would obscure the map at the figure’s level of res-683

olution. Fig. 7B shows a map of population density as684

represented by our grid. Overall, the two maps are sim-685

ilar but there some differences that can be summarized686

into two categories: (a) the block-based map is more687

consolidated and thus appears to have less detail, and688

(b) the grid-based map shows uninhabited areas which689

appear as inhabited on the block-based map.690

The first difference stems directly from the fact that691

the dasymetric model disaggregates blocks into sub-692

block cells whose densities may vary. In general this693

results in superior spatial resolution for the grid. How-694

ever, we need to keep in mind the uncertainty of the695

dasymetric model. Consider areas immediately south696

and north of Golden Gate Park (a prominent rectan-697

gle elongated along the west-east axis). Inspection of698

these areas using a high resolution image or map (for699

example those available in Google Maps) reveals that700

they are characterized by a grid layout of streets with701

houses filling the grid. This is not captured by the block-702

based map because the blocks contain both houses and703

streets. With 30 m resolution one would expect that the704

grid-based map would show a white-purple pattern cor-705

responding to streets (uninhabited) and houses (inhab-706

ited with high density). Instead, we observe a pattern707

consisting of purple (high population density) and light-708

purple (smaller population density) colors which is due709

to the fact that the NLCD in these areas does not recog-710

nize narrow streets and interprets the Landsat image as711

a mosaic of high and medium intensity developed land712

cover classes; the NLUD also do not delineate streets in713
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Figure 7: Comparison of population maps for San Francisco (CA). (A) The block-based map. (B) The grid-based map. Boundaries of census
blocks are not show for clarity.

these areas. Thus, although the grid correctly indicates714

the heterogeneity of population density in these areas,715

the spatial scale of streets is too small for them to be rec-716

ognized as uninhabited areas. Still, there is some gain717

in information with respect to the block-based map.718

The second difference is a direct result of the mod-719

ifiable areal unit problem, entire blocks in the block-720

based map are marked by colors corresponding to low721

or medium values of population density even if they are722

mostly uninhabited but have small portions occupied by723

housing. Inspection of a high-resolution image or map724

reveals that most areas on the block-based map shown725

in yellow, light brown, or red colors are really predomi-726

nantly uninhabited.727

Fig. 8A shows a map of population density in a ru-728

ral site centered on the Lake Loramie State Park, OH729

calculated from census blocks; density is uniform over730

each block as it was calculated by dividing the popula-731

tion in a block by its area. A high resolution image of732

this site (Google Earth) reveals the presence of Lake Lo-733

ramie (center) and three small towns (the western part734

of the site), but most of the site is an agricultural land-735

scape crossed by a grid-like network of secondary roads.736

Farmhouses are located predominantly at intersections737

of the roads, leaving most of the land uninhabited.738

The block-based map does not reflect the real distri-739

bution of population because it assigns homogeneous740

density to predominantly uninhabited blocks. As a re-741

sult most of the map is shown in a brown color corre-742

sponding to a population density of 10-50 people/km2.743

This is a relatively small value of density but still the744

reality is that these areas are uninhabited except at the745

locations of individual farmhouses. Fig. 8B shows the746

map of population density as represented by our grid.747

This map does not completely eliminate the inaccurate748

impression about the character of population distribu-749

tion at this site but it significantly alleviates the problem750

by concentrating population in farmhouses and along751

the roads leaving the rest of the countryside either unin-752

habited or with a negligibly small density of population.753

Fig. 8B must be magnified in order to see small red dots754

indicating the population concentration along the sec-755

ondary roads and at individual locations.756

6. Discussion and conclusions757

The purpose of the work presented in this paper, was758

to deliver the best possible nationwide population grid759
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that can be constructed using readily available public760

domain data. The resultant product, which we call761

SocScape–30, is a 30 m resolution grid carrying values762

of residential (nighttime) population densities in 2010.763

The grid is freely distributed through the web using the764

SocScape GeoWeb application. The availability of this765

resource should make population data more accessible766

and thus more utilized.767

We decided to combine land cover (NLCD) and land768

use (NLUD) datasets into a single ancillary variable to769

guide dasymetric modeling – the technique on which770

our grid is based. It may be asked why we did not uti-771

lize more ancillary datasets such as tax parcel data, road772

network data, the density of points of interest, topogra-773

phy, light emission etc. There are three reasons behind774

our choice. First, unlike other parts of the world, in775

the U.S. available land cover and land use datasets are776

highly reliable and the smallest census units (blocks)777

are small making additional ancillary information re-778

dundant or unnecessary. Second, apart from the road779

network (which we claim is redundant when NLUD is780

utilized) land cover and land use grids are the only read-781

ily available ancillary data that are consistent over the782

entire U.S. Tax parcel data – potentially useful ancillary783

information – is only available for some states (see sec-784

tion 4.2) and each state or even county releases this data785

in its own format making the consistency of tax parcel786

data an issue. Our uncertainty estimates (section 4.2),787

admittingly performed only for a single county, indicate788

that using ancillary data based on the combination of789

NLCD and NLUD yields a grid that is only slightly less790

accurate than a grid based on disaggregation using tax791

parcel data. Point of interest data is equally inconsistent792

on the continental scale. Third, land cover and land use793

datasets are available in a convenient grid format mak-794

ing data pre-processing more efficient and free from po-795

tential artifacts.796

We use a relatively simple dasymetric model instead797

of seemingly more advanced models based on super-798

vised machine learning (Stevens et al., 2015) because799

our model uses only a single ancillary variable. The800

model is based on nation-wide statistics rather then on a801

series of local statistics which could potentially capture802

a non-stationarity of the relationship between popula-803

tion density and an ancillary variable (Lo, 2008; Gal-804

lego, 2010; Schroeder and VanRiper, 2013). We se-805

lected this model from among the three we have cal-806

culated. The other two models attempted to address807

the non-stationarity issue. For the second model we808

divided the U.S. into five zones following the United809

States Department of Agriculture (USDA) Rural-Urban810

Continuum Codes for U.S. counties: rural areas, small811

town, micropolitan areas, metropolitan statistical areas812

(MSAs), and MSAs with population > 1,000,000 peo-813

ple. For each zone separately we calculated a dasymet-814

ric model as described in section 3. As expected, the815

values of relative population density coefficients vary816

somewhat from one zone to another but the accuracy of817

such model, as measured by the mean value of CV cal-818

culated over the entire conterminous U.S., is not higher819

than that of our default model. In addition, the zoned820

model contains artifacts as the population density is dis-821

continuous at the boundaries between the zones. In our822

third model we fitted characteristic values of population823

density separately for each county or census tract (like824

in Gallego (2010) who deployed such a technique for825

Nomenclature of Territorial Units for Statistics (NUTS)826

– very large territorial regions) but we found that tracts827
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or counties are too small to have a statistically valid828

sample of homogeneous blocks. Thus, overall, we829

deemed the default model to be the best choice for our830

purpose.831

We have performed a comprehensive assessment of832

the accuracy of the method used to obtain our grid (sec-833

tion 4.2). We estimate an overall relative error to be834

44%, which may appear to be large. However, it is at the835

lower limit of errors estimated for other methods used836

to create state-of-the-art population grids. The error of837

the EU 100 m grid (Gallego et al., 2011) is estimated to838

be between 40% to 105% depending on the dasymetric839

model used and the country for which the assessment840

was done. The error for the WorldPop population grids841

is estimated to be between 39% and 91% for the newest842

models (Stevens et al., 2015) or between 46% to 120%843

for older models (Gaughan et al., 2013) depending on844

the country. It is important to note that each project uses845

a slightly different methodology to assess accuracy, but846

conclusions are similar – dasymetric model has an ex-847

pected uncertainty of about 40-100%. We also provide848

the means for a more specific estimation of expected849

error (Fig. 5) based on additional knowledge about the850

population density of the area of interest. The largest851

source of error stems from the blurred relationship be-852

tween land cover classes and population density. Using853

land use classes would help with this problem but the854

quality of U.S.-wide land use data is not sufficient to be855

utilized in a role other than for delineation of uninhab-856

ited areas. It is important to realize that the expected857

error estimates give the difference between a predicted858

and an actual number of people in a area of interest.859

It does not comment on the spatial precision of delin-860

eation between inhabited and uninhabited areas. In our861

grid this delineation follows the land use data and is ex-862

pected to be fairly accurate.863

As we mentioned in section 4.1 weights (eq. 2) cal-864

culated on the basis of our model can be used to disag-865

gregate other census block-level (SF1) variables which866

represent population segments; examples include sex,867

age and race. Such a disaggregation will not be able868

to account for possible sub-block heterogeneities in the869

proportion of each population segment to the total popu-870

lation, this will remain fixed throughout each block, but871

it will give a more accurate spatial location of each pop-872

ulation segment by keeping it away from uninhabited873

areas and making an adjustment in line with the sub-874

block overall population density. One immediate appli-875

cation is the construction of a 2010 version of diversity876

maps like those introduced in Dmowska and Stepinski877

(2014) and analyzed in Dmowska and Stepinski (2016)878

for years 1990 and 2000.879

Future plans call for recalculation of the 1990 and880

2000 editions of U.S. population grids from 90 m res-881

olution obtained by disaggregating SEDAC 1 km grid882

(Dmowska and Stepinski, 2014) to 30 m resolution us-883

ing the technique presented in this paper. The major884

promise of having grids for various years is the ability885

to assess spatio-temporal population change. For such886

grids not to lead to discovery of spurious change they887

must be constructed using compatible ancillary datasets.888

Our plans call for us to make available through Soc-889

Scape not only the best possible population grid for890

2010 as described in this paper – but also for compat-891

ible, but not necessarily the best possible – population892

grids for 1990, 2000, and 2010 for the purpose of ana-893

lyzing spatio-temporal change.894
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