Spatial approach to identyfing trends in racial composition changes for large American cities: 1990-2000-2010

Anna Dmowska¹ (<u>dmowska@amu.edu.pl</u>), Tomasz Stepinski² (<u>stepintz@ucmail.uc.edu</u>)

¹Adam Mickiewicz University, Poznan, Poland ²Space Informatics Lab, University of Cincinnati, US

GeoComputation 2017, 4.09.2017-7.09.2017, Leeds, UK

Racial composition changes in the United States

- Changes in racial composition over time steer U.S into overall multiethnic society by 2045 (U.S Census population projection).
- This changes are even more rapid in the largest American cities.

Racial composition in the three most populated U.S cities

Race	% of population in 2010 (% changes 1990-2010)			
Ethnicity	New York	Los Angeles	Chicago	U.S
White	33.3 (-14.6)	28.7 (-12.1)	31.7 (-34.4)	63.7 (-11.9)
Black	25.5 (+2.6)	9.6 (-1.0)	32.9 (+13.8)	12.6 (-0.9)
Native Am.	0.7 (+0.5)	0.7 (+0.3)	0.5 (+0.4)	0.9 (+0.2)
Asian	12.8 (+ 6.6)	11.4 (+1.2)	5.5 (-1.2)	5.0 (-2.2)
Other race	4.0 (+3.7)	4.6 (+4.3)	2.7 (+2.6)	2.9 (+2.8)
Hispanic	28.6 (+ 6.5)	48.5 (+10.7)	28.9 (+ 27.5)	16.3 (+7.3)

<u>US_2010</u> 2/3 (Whites) 1/3 (minorities)

<u>Cities_2010</u> 1/3 (Whites) 2/3 (minorities)

U.S-wide high resolution grids

Total population

Method: Dissagregation of block-level data into 30m grid cells using dasymetric modeling and National Land Cover Dataset as ancillary data. Year: 1990, 2000, 2010

Racial diversity grids

Racial diversity maps show **spatial character of racial diversity across the U.S**. It is a result of **three dimensional** (diversity, dominant race, population density) **classification** of grids cells based on population/subpopulation grids. The resultant map has **40 categories.**

Providing open access to hi-res grids

http://sil.uc.edu/webapps/socscape_usa/

Zipped archives for counties and metropolitan areas

- Spatial extent:
 - 3100 counties
 - 363 MSA
- Data:
 - Population and race/ethnicity grids
 - Racial diversity classification
 - Racial change dataset (only MSA)
- Time: 1990/2000/2010

SocScape:

- Exploring and detecting change of population density and racial diversity in different scales (from U.S. down to the street)
- Download data for selected region (to 100 000 km²)
- Data:
 - Population grids
 - Racial diversity classification
- Time: 1990/2000/2010

http://sil.uc.edu/cms/index.php?id=socscape-data

Spatial approach to assessing changes in racial composition

DATA

- 9 community zones
- Time: 1990, 2000, 2010
- 41 U.S cities:
 - Metropolitan areas pop > 1mln
 - All 9 communities present during 1990,2000,2010

Analyzed U.S cities

Communities

Community zone – a region containing all cells with the same diversity label in the racial diversity map

Low diversity (Race>80%, E<0.37)	Medium diversity (Race = (50-80%), E =(0.37,0.73))	High diversity (Race<50%, E>0.73)
White low diversity (WL)	White medium diversity (WM)	High diversity (Hdiv)
Black low diversity (BL)	Black medium diversity (BM)	
Asian low diversity (AL)	Asian medium diversity (AM)	
Hispanic low diversity (HL)	Hispanic medium diversity (HM)	

(1) Measuring community zones

Each community in each city is described by the **pair of class level landscape metrics**:

Percentage of landscape PLAND (0-100%)

- refers to the percentage of the city area occupied by a given community zone.
- Change in PLAND indicates growing or shrinking of the community (*we assume that population is proportional to an area*).

Aggregation index AI (0-100)

- describes a level of aggregation (low to high) of an area occupied by a given community
- Change in AI indicates merging (agglomerationg) or fragmenting of the community.

Calculation of PLAND and AI was performed using SDMTools (Species Distribution Modeling Tools) in R software. We calculate 1107 (41 cities x 9 communities x 3 time instances) pairs of (PLAND,AI) values.

(2) Calculating change trajectories

Step 1: Calculating relative change in PLAND and AI for each change period (1990-2000, 2000-2010):

Step 1: Calculating relative change in PLAND and AI

Step 2. Simplify change data into 8 categories $\delta_{i+10,i}^{X} = \frac{(X_{i+10} - X_i)}{X_i}$

 δ^{X} – relative change; X – refers to PLAND or AI; i – 1990 or 2000

Change in each community in each city is descirbed by the pairs of values

Step 3. Construct a change trajectory

 $(\delta^{PLAND}_{1990,2000},\delta^{AI}_{1990,2000})\,,\,(\delta^{PLAND}_{2000,2010},\delta^{AI}_{2000,2010})$

(2) Calculating change trajectories

Step 2: Simplify change data by classifing the pairs of values (δ^{PLAND} , δ^{AI}) into 8 categoties labeled by numbers 1 to 8.

(2) Calculating change trajectories

Step 1: Calculating relative change in PLAND and AI

Step 2. Simplify change data into 8 categories

Step 3. Construct a change trajectory

Step 3: Construct a change trajectory

A change trajectory is a pairs of this 8 categories where the first element is the change category in the period 1990-2000 and the second element is the change category in the period 2000-2010.

- There are 64 possible combination of change trajecotory
- Example:
 - A community which grew and fragmented during 1990-2000 but shrinked and fragmented during 2000-2010 is labeled (4,2)

A frequent change trajectory is defined as a change trend.

(3) Statistics of change trajectories

AI

Histogram of change trajectory types constructed for "black low diversity" communities in 41 cities

(3) Statistics of change trajectories for all communities

Trend – frequent change trajectory containing > 30% of cities (12), there are 8 such trends

Visually: trends are prominent peaks in histograms

(5) Analysing spatial distribution of change trajectories

Conclusion

- We present a spatial approach to a demographic problem of analysis changes in racial composition in American cities.
- Our approach is based on landscape metrics (PLAND and AI) calculating using high resolution categorical raster map of racial diversity.
- We identified change trajectories that contain information about changes from two change periods instead of one.
- Spatial approach makes possible more detailed information for demographers and policymakers to better understand the changes in racial composition.
- The main findings from the survey of 9 communities in 41 US cities during 3 times points (1990,2000,2010) are:
 - 23 out of 64 theorethical possible change trajectories were identified (6 growing types (237 instances), 6 shrinking types (73 instances), 11 mixed types (59 instances))
 - **Trends** for 7 out of 9 communities were identified.
 - Only **4 different** trends (1,1), (5,5), (4,5), (5,4) are identified
 - No strong spatial geographical difference in the trajectories is observed, except for BM community (BM communities shrink in the West Cost and grow everywhere else).

Acknowledgments

Participation in the conference is funded by the **PLOSE Early Career Travel Award Program.**

(https://www.plos.org/ecr-travel-awards)